Improving Difficult Queries by Leveraging Clusters in Term Graph

نویسندگان

  • Rajul Anand
  • Alexander Kotov
چکیده

Term graphs, in which the nodes correspond to distinct lexical units (words or phrases) and the weighted edges represent semantic relatedness between those units, have been previously shown to be beneficial for ad-hoc IR. In this paper, we experimentally demonstrate that indiscriminate utilization of term graphs for query expansion limits their retrieval effectiveness. To address this deficiency, we propose to apply graph clustering to identify coherent structures in term graphs and utilize these structures to derive more precise query expansion language models. Experimental evaluation of the proposed methods using term association graphs derived from document collections and popular knowledge bases (ConceptNet and Wikipedia) on TREC datasets indicates that leveraging semantic structure in term graphs allows to improve the results of difficult queries through query expansion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

Improving Search Engine For A Digital Library

This project introduces a novel approach for using click through data to discover clusters of similar queries and similar URLs. One can simply observe that users reformulate their queries to find a desirable result. We define this sequence of queries as a query chain. Our data set consists of records containing user id, query term, query date and time, clicked item URL and clicked item rank if ...

متن کامل

Leveraging User Query Sessions to Improve Searching of Medical Literature

Published reports about searching medical literature do not refer to leveraging the query context, as expressed by previous queries in a session. We aimed to assess novel strategies for context-aware searching, hypothesizing that this would be better than baseline. Building upon methods using term frequency-inverse document frequency, we added extensions such as a function incorporating search ...

متن کامل

مدل جدیدی برای جستجوی عبارت بر اساس کمینه جابه‌جایی وزن‌دار

Finding high-quality web pages is one of the most important tasks of search engines. The relevance between the documents found and the query searched depends on the user observation and increases the complexity of ranking algorithms. The other issue is that users often explore just the first 10 to 20 results while millions of pages related to a query may exist. So search engines have to use sui...

متن کامل

Online Query Grouping With Collaborative Ranking Based On Search History

Users are depending on the web to pursue complex tasks and to achieve broader information. Search of complex tasks usually breaks down into co-dependent steps and issue multiple queries. Query Grouping is used to collect related queries which need common information. Query groups are used to support user in their long term information search. Online query groups are created in an automated and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015